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Abstract

Measurements of CO2 partial pressures (pCO2) in small headwater streams are useful
for predicting potential CO2 efflux because they provide a single concentration repre-
senting a mixture from different hydrological pathways and sources in the catchment.
We developed a model to predict pCO2 in headwater streams from measurements un-5

dertaken on snapshot samples collected from more than 3000 channels across the
landscape of England and Wales. We used a subset of streams with upstream catch-
ment areas (CA) of less than 8 km2 because below this scale threshold pCO2 was
independent of CA. A series of catchment characteristics were found to be statistically
significant predictors of pCO2 including three geomorphic variables (mean altitude,10

mean catchment slope and relief) and four groups of dominant catchment land cover
classes (arable, improved grassland, suburban and all other classes). We accounted
for year-round, temporal variation in our model of headwater pCO2 by including weekly
or monthly analyses of samples from three headwater catchments with different land
use and geomorphic features. Our model accounted for 24 % of the spatial and tempo-15

ral variation in pCO2.
We calculated monthly long-term (1961–1990) average flow volumes (litres) on a

1 km grid across England and Wales to compute potential C fluxes to the atmosphere.
Our model predicts an annual average potential C flux of 60.8 kt C across England and
Wales (based on free C concentrations), with lower and upper 95 % confidence values20

of 52.3 and 71.4 kt C, respectively.

1 Introduction

There is increasing interest in approaches to compute fluxes in the global carbon cycle,
including the role of freshwater channels (Benstead and Leigh, 2012) which are active
conduits for the transfer of greenhouse gases to the atmosphere from the terrestrial25

biosphere (Battin et al., 2009). Evasion of carbon dioxide (CO2) from surface waters

16454

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/16453/2013/bgd-10-16453-2013-print.pdf
http://www.biogeosciences-discuss.net/10/16453/2013/bgd-10-16453-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 16453–16490, 2013

Landscape
predictors of

headwater stream
pCO2

B. G. Rawlins et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

may account for up to 10 % of net ecosystem exchange (Sun et al., 2011). In a recent
study, Butman and Raymond (2011) used stream water pCO2 values from samples col-
lected at flow gauging stations (channels ranging from 1st to 10th order) in combination
with estimates of stream surface area and gas transfer velocities to compute CO2 efflux
across the USA. For many continents, such large-scale geochemical datasets are un-5

available, but it may be possible to develop alternative approaches to compute stream
water pCO2 values (and fluxes) from more readily available, landscape data.

Measurements of CO2 partial pressures (pCO2) in small headwater streams may be
particularly useful for predicting CO2 efflux because: (i) it has been suggested that the
provenance of 77 % of the CO2 evasion from channels in large river basins such as10

the Amazon is from soil respiration (Johnson et al., 2008), and headwater streams are
closely connected to the soil, (ii) they provide a single concentration representing a mix-
ture from different hydrological pathways and sources within the catchment including
soil-water, both shallow and deeper groundwater contributions (Jones and Mulholland,
1998) and in-stream (e.g. through the mineralisation of organic carbon in stream wa-15

ter and bed sediments) sources of CO2, and (iii) pCO2 values typically decline with
increasing stream order/catchment size (Butman and Raymond, 2011; Li et al., 2013)
and accounting for lengthy upstream evasive losses (based on measurements from
larger channels) may be prone to substantial error because the gas transfer coefficient
(KCO2

) exhibits a considerable degree of spatial and temporal variation (Wallin et al.,20

2011).
In our experience, measurements of headwater stream pCO2 from large, landscape-

scale surveys are rare. In this study we investigated those catchment characteristics
which account for variations in pCO2 using data from a headwater stream survey
across England and Wales. We hypothesised that a range of upstream catchment25

characteristics – defined by the delineated watershed of a particular sampling loca-
tion – could account for variations in headwater pCO2. A similar approach was applied
to channel water chemistry data from the channels of 814 substantially larger catch-
ments (catchment area (CA) from < 1000 to > 10 000 km2) across North America and
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Canada. In this study, multiple analyses were available at each site from which a mean
pCO2 was computed (Lauerwald et al., 2013). In their study, Lauerwald et al. (2013)
found that mean air temperature, mean catchment slope gradient and mean annual
precipitation explained 43 % of the variation in the negative logarithm of mean pCO2
in rivers from which these catchment characteristics were calculated; the proportion of5

agricultural land was not found to be a statistically significant predictor of mean mean
pCO2. Other studies have also shown that catchment characteristics including CA,
dominant land cover class (including urban/suburban) (Butman and Raymond, 2011;
Prasad et al., 2013; Li et al., 2013) and geomorphic features such as slope and eleva-
tion (Jones et al., 1998) account for variations in channel pCO2. However, no previous10

studies have used landscape-scale data on headwater pCO2 values from which eva-
sive loss of CO2 would be substantially smaller than for larger channels with larger
(Strahler) stream orders (e.g. > 3). Lauerwald et al. (2013) reported there was no ob-
servable effect of including a temporal component into their multiple regression ap-
proach based on inclusion of average sampling year.15

We consider that stream CA would likely account for more of the variation in headwa-
ter pCO2 than stream order. Catchments in different geomorphic settings may exhibit
a wide range of stream lengths for the same stream order; stream order being a signifi-
cant control on CO2 evasion (Butman and Raymond, 2011). By contrast, total upstream
CA is a continuous quantitative measure which is more closely correlated with chan-20

nel geometry (Booker and Dunbar, 2008). The advantage of establishing predictors of
stream pCO2 based on geomorphic features and land cover is that they can be derived
for entire landscapes from widely available digital terrain and remotely sensed data,
respectively. It may be possible to develop a statistical model to predict pCO2 for those
parts of similar landscapes where stream chemistry data are unavailable.25

The vast majority of the sampling sites in our snapshot (one visit per site) survey
dataset were headwater streams (CA 1–10 km2). We wished to investigate whether it
is possible – by undertaking a statistical analysis for catchments across a range of
scales and considering other predictors – to determine a threshold scale below which
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stream pCO2 are independent of CA. By restricting our analysis to those data below
this threshold we will have confidence that our model does not underestimate pCO2
due to downstream net loss. In other words, we estimate pCO2 in the uppermost part of
the stream network where rates of CO2 evasion to the atmosphere are not substantially
greater than inputs from groundwater or in-stream sources such as the turnover of5

fluvial carbon.
Where model predictions are available for headwater pCO2 across a landscape it

may be possible to use a simplifying approach to compute potential CO2 evasion
fluxes. The approximate timescale for dissolved pCO2 to reach equilibrium with the
atmosphere is around 100 h in a large river system (Morel and Hering, 1993), similar10

to the water residence time of many large waterbodies of England and Wales. In this
study we compute CO2 evasion fluxes assuming that channel residence times are suf-
ficient for all free CO2 to evade and also that there are limited downstream changes
in water chemistry. This is different approach to efforts to model downstream losses
based on gas transfer velocities and stream hydraulics (Raymond et al., 2012).15

Headwater pCO2 exhibit seasonal variations (Jones et al., 1998), so to compute
potential CO2 annual evasion fluxes it is necessary to account for this. In this paper,
the large-scale survey dataset of headwater stream samples was undertaken between
June and September. To encompass year-round variation we included in our predictive
model datasets for a series of small (< 10 km2) headwater catchments which were20

monitored for a full calendar year or more (Dinsmore et al., 2010).
In this paper we develop a statistical model to predict monthly headwater stream

pCO2 using large-scale survey data from around 3000 locations across England and
Wales, and a series of associated catchment characteristics. We determine an opti-
mum set of land cover class groupings to include in our model by undertaking a series25

of significance tests. We also investigate the incorporation of the temporal variation of
headwater pCO2 into our predictive model. We apply the resulting model using land-
scape characteristics to predict pCO2 values in flow from cells on a 1 km grid across
England and Wales. After converting pCO2 to free C concentrations in water we com-
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pute potential monthly C fluxes using flow volumes for a 1 km grid across England and
Wales based on monthly estimates of hydrologically effective rainfall. We also calculate
the 95 % confidence intervals for potential C fluxes based on the model predictions.

2 Methods

2.1 Headwater stream pCO25

2.1.1 Large-scale headwater survey

The methods used in the large-scale headwater survey are described in detail in
Johnson et al. (2005). Headwater stream samples were collected during the sum-
mer months (June–September) of the years between 1998 and 2002 (inclusive). Sam-
pling was undertaken between 09:00 UTC and 17:00 each day but the precise time10

was not recorded. In our study we wished to avoid potential bias introduced by in-
cluding stream water sampling and analyses undertaken during large channel flows
(greater than mean flow), so we selected only those samples from sites where there
had been no substantial rainfall for more than 7 days. We used information from local
flow gauging stations to determine whether local flow conditions were below mean flow15

(Sect. 2.3). Details of each sampling location were recorded on a field card and col-
lated in a database with a unique sample identifier. The sampling locations are shown
in Fig. 1.

A total of four separate water samples were collected from each site so that a range
of measurements could be made. These include (analyses in parenthesis):20

1. a 250 mL Nalgene polyethylene bottle (alkalinity titration)

2. a 30 mL polyethylene bottle (conductivity and pH)

3. a 60 mL Nalgene bottle which is filtered (0.45 µm) and subsequently acidified (see
below; prior to analysis by ICP-AES)

16458

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/16453/2013/bgd-10-16453-2013-print.pdf
http://www.biogeosciences-discuss.net/10/16453/2013/bgd-10-16453-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 16453–16490, 2013

Landscape
predictors of

headwater stream
pCO2

B. G. Rawlins et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4. a 60 mL Nalgene bottle which is filtered (0.45 µm) not acidified (ion chromatogra-
phy/TOC analyser).

All samples were collected from the middle of the stream. In the case of samples 1
and 2 (above) the sample containers were thoroughly rinsed three times. The contain-
ers were then submerged in stream and sealed underwater to ensure that all the air5

had been expelled. On return to the field base all samples were refrigerated at around
4 ◦C prior to further analysis.

Conductivity and pH were measured on the evening of sample collection. Conduc-
tivity was measured using a Hannah HI9033 portable conductivity meter calibrated
with a conductivity standard and thermometer. pH was determined using a radiometer10

PHM80 m with combination electrode using buffer solutions (pH 4, 7 and 9). Alkalinity
measurements were made the day after sample collection based on a simple labo-
ratory titration method using a bromocresol green indicator. Samples 3 and 4 were
used to determine the concentrations of a range of cations (including Ca2+, Mg2+,
Na+, K+; ICP-AES Fisons Instruments ARL 3580) and anions (NO−

3 , SO2−
4 , Cl−). For15

a subset of samples dissolved organic carbon was determined using Shimadzu TOC
5000 analyser, purging all inorganic carbon with hydrochloric acid. Quality control was
undertaken on these data using blank waters and duplicates collected in the field.

For each sample we calculated the theoretical partial pressure of CO2 that would be
in equilibrium with the dissolved inorganic carbon, using the aqueous speciation model20

PHREEQC (Parkhurst and Appelo, 1999) with the phreeqc.dat database. Temperature
measurements were not available for the water samples and we assumed a stream
water temperature of 12 ◦C in all these speciation calculations. We associated a unique
site identifier with the estimated pCO2 value at each headwater survey site.

2.1.2 Seasonal variations in stream water pCO225

To account for seasonal variations in stream water pCO2 values we included data from
three headwater catchments (with differing dominant land use types and mean eleva-
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tions) where monitoring was undertaken on either a weekly or monthly basis through
complete calendar years. The features of these three catchments and the associated
data are summarised in Table 1. In the case of the Pow and Wensum catchments, we
used measurements of pH, alkalinity and dissolved cations and anions to predict pCO2
values using the same approach as the headwater survey (based on the speciation5

model PHREEQC Parkhurst and Appelo, 1999). For these catchments stream water
temperature data at the time of sampling were also available for the speciation calcu-
lations. We converted the sampling date to a numeric value representing day between
1 and 365 (1 January has a value of 1).

2.2 Catchment characteristics10

2.2.1 Catchment area

We used the ArcHydro extension and a 5 m resolution Digital Surface Model
(NEXTMap Britain elevation data from Intermap Technologies, Intermap, 2009) to cre-
ate drainage catchments upstream of all the stream sampling sites (n = 3274). We
created a series of catchment polygons with a unique sample identifier so we could15

estimate catchment properties from other landscape data. We calculated the total area
of each catchment polygon and associated it with the unique identifier from each head-
water survey site.

2.2.2 Geomorphic variables

Previous studies (Butman and Raymond, 2011) have shown that over prolonged peri-20

ods total rainfall is negatively correlated with CO2 evasion. In temperate climates there
is typically a strong correlation between altitude and total rainfall, so the former may be
a useful proxy for the latter where accurate rainfall data is unavailable at fine scales (e.g
< 10 km2). Other geomorphic features such as catchment slope may also account for
variations in stream water pCO2 because it influences contact time between soil and25
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percolating water. We used the Digital Surface Model to compute mean elevation (m),
mean slope (◦), and relief (difference between minimum and maximum elevation (m))
for each of the headwater catchments in our study based on the catchment polygons.
We also calculated the same measures for a 1 km grid across all of England and Wales.

2.2.3 Land cover class5

The dominant land cover class in each catchment was determined by intersecting the
catchment polygons with a 25 m pixel Land Cover map of Great Britain 2000 (Fuller
et al., 1994) and identifying for each catchment the class with the largest number of
pixels. We also calculated the dominant land cover class for the 1 km grid across Eng-
land and Wales.10

2.2.4 Soil and geology

We also wished to establish whether spatial data on soils and hydrogeology could
account for variations in headwater pCO2. We used a simplified classification to de-
termine the dominant parent material (PM) group for each catchment polygon and
associated the PM code with each catchment (Lawley and Smith, 2008). We also de-15

termined the mean BFIHOST value for each catchment. The 1 km grid BFIHOST data
for England and Wales was derived from a combination of information on catchment
baseflow index (Gustard et al., 1992) and associated maps classified by the hydrology
of their soil types and substrates (HOST) (Boorman et al., 1995).

2.3 Removal of survey sites with the largest flows20

We considered that bias might be introduced into our predictive model if we included
stream sites which had large flows when they were sampled (Dinsmore et al., 2010).
Time-series of headwater stream flow exhibit strong positive skewness; we chose to
exclude sites where data from local gauging stations showed that flow on the stream
sampling date was larger than mean daily flow. We used the ann function in the R25
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package yaImpute (Crookston and Finley, 2007) to determine the nearest neighbouring
National River Flow Archive (http://www.ceh.ac.uk/data/nrfa/index.html) flow gauging
station (based on their coordinates). We identified a total of 93 local gauging stations
(Fig. 1) which were nearest neighbouring stations to the selected sampling sites and
which also had flow data spanning the full period of sampling. We then extracted the5

mean daily flow data for each of these gauging stations for the full-year period spanning
the dates over each full year for which the samples were collected (1 January 1988 to
31 December 2003). We computed the mean of the mean daily flow values for this
period for each of the 93 gauging stations and compared these to mean daily flow
on the sampling date recorded for each nearest neighbouring, large-scale survey site.10

By doing so, we identified 85 sites (from a total of 3274 sites) where mean flow was
exceeded. We removed the data for these sites from our survey dataset prior to further
statistical analysis (Fig. 2).

2.4 Model of stream water pCO2

We undertook preliminary exploratory statistical analyses using the headwater survey15

data. The steps we undertook in developing and applying a model to predict stream
water pCO2 across England and Wales using the available data are summarised in
Fig. 2. These include selecting subsets of the data, applying a transformation to the
pCO2 values, predicting pCO2 on the transformed values, including the calculation of
confidence intervals for these predictions, and computing potential C fluxes based on20

flow from a 1 km grid across England and Wales. We describe below the rationale for
developing the model and its implementation.

The calculated pCO2 values at the stream survey sites were strongly positively
skewed (skewness coefficient = 2.66). We found that a logarithmic transformation
of the pCO2 applied after the addition of a small positive value (linear shift) of25

3×10−5 produced a variate with an normal approximately normal distribution (skew-
ness coefficient = −0.06). We undertook all subsequent statistical analyses using this
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transformed data, and backtransformed the values to original units for the calculation
of C fluxes (Fig. 2).

2.4.1 Catchment area threshold

The stream sites which were sampled as part of the large-scale headwater survey ex-
hibited a range of catchment areas from 0.01 to 254 km2 with a mean of 5.49 km2.5

We needed to ensure that estimates of pCO2 from all these sites were representative
of headwaters; there is strong evidence (Butman and Raymond, 2011) that as CA (or
stream order) increases from the smallest catchments, pCO2 decreases because eva-
sion exceeds inputs of CO2 from a combination of groundwater and in-stream sources.
In their study, Lauerwald et al. (2013) did not observe any correlation between CA and10

negative log pCO2 because their analyses were based on substantially larger catch-
ments (generally greater than 1000 km2; two orders of magnitude larger than in our
study) from which a substantial proportion of CO2 will have evaded to the atmosphere.
To investigate this further, we formed a scatterplot of pCO2 vs. CA (Fig. 3). This sug-
gested that those sample sites with the larger CA had – on average – lower pCO215

values. To determine if there was a threshold CA below which this effect was not sta-
tistically significant, we fit ordinary least squares models (using the lm function in the R
computing environment, R Development Core Team, 2012). In each case the predic-
tors were CA values for subsets of headwater sites truncated at thresholds of < 2, < 4,
. . ., < 20, < 50, < 100 and < 250 km2 and the predictand was the series transformed20

pCO2 values. We investigated: (i) whether CA is a statistically significant predictor of
pCO2 (P < 0.05) for this range of CA values, and (ii) if there is a threshold at which CA
was no longer a statistically significant.

2.4.2 Land cover: orthogonal contrasts

In their study, Butman and Raymond (2011) showed that land use was strongly related25

to area normalised C fluxes from surface water for a range of drainage basin regions
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across the USA. Preliminary exploratory analyses (Fig. 4) suggested that catchment
dominant land cover class would likely be a statistically significant predictor of head-
water stream pCO2 in our survey data from England and Wales. There are reasons
why we might expect the magnitude of ecosystem soil respiration (a major factor in
controlling streamwater pCO2) to reflect land cover type. For example, the addition of5

nutrients (fertilisers) to maximise agricultural production enhances both net primary
production and also soil heterotrophic respiration, leading to larger soil gas pCO2 val-
ues (Smith, 2005). Therefore we might expect mean pCO2 values in streams draining
agricultural catchments (arable or improved grassland) to be greater than those drain-
ing less managed or semi-natural habitats. Catchments dominated by urban land use10

may also have larger pCO2 values because of nutrient inputs to managed gardens
and increased heterotrophic respiration associated with nutrient loads in urban waste
water. We wished to determine the most appropriate set of land cover classes for in-
clusion in our statistical model. The ten dominant land cover classes (from the Land
Cover Map) were: Arable, Bog, Broadleaf, Coniferous (Forest), Fen, Heather, Heather15

Grass, Improved Grassland, Rough Grassland and Suburban. We formed an hierarchi-
cal classification (Fig. 5) of these groups and undertook a statistical analysis using five
orthogonal contrasts based on it:

1. managed land vs. less managed land+urban

2. urban vs. less managed20

3. within less managed (forested vs. non forested)

4. within less managed: non forested (wetter vs. drier)

5. within managed (arable vs. improved grassland)

The orthogonal treatment contrasts were entered using the contrasts function in the
R environment (R Development Core Team, 2012). Each of the contrasts was tested25

using the aov command to determine whether they were statistically significant (P <
0.05).
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2.4.3 Temporal variation

To account for seasonal variations in pCO2 we converted sampling dates from all the
headwater surveys into a year day value (numeric values between 1 and 365). We
expressed the year day values on a radian scale (range from zero to 2×π). To account
for any seasonal trend we included terms for both sine and cosine of the radian-based5

units for year day in the ordinary least squares regression model.

2.4.4 Refining the model

Using a subset of the initial headwater survey data (based on an appropriate CA thresh-
old) and including the temporal data from three headwater catchments (Fig. 2) we per-
formed stepwise selection of the model predictors using the stepAIC function from the10

MASS library (Venables and Ripley, 2002). This tests the inclusion of predictors based
on the Akaike information criterion; the k value (multiple of the degrees of freedom
for penalty) was 2 and the mode of stepwise search was forwards and backwards.
In our model specification we included an interaction term between elevation and the
land cover classification (based on the findings from the orthogonal contrasts) as we15

considered this may be significant.

2.5 Monthly flow volumes

Our measurements of pCO2 from headwater streams represent pathways combining
shallow and deeper flow routes. Their relative magnitude depends on both geomor-
pholoogy and the physical properties of local bedrock, any Quaternary deposits and the20

soils overlying them. We used data on long-term (1961–1990) average mean monthly
rainfall (mm) and potential evapotranpsiration (mm) to determine the quantities of hy-
drologically effective rainfall on a 1 km grid for each calendar month across England
and Wales. Data for the former was available on a 1 km grid whilst the latter was on
a 40 km grid.25
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2.6 Model of headwater stream temperature

The conversion of pCO2 to free C concentration in freshwater relies on computation
of Henry’s constant which is temperature dependent. There is a substantial degree of
variation in annual stream temperature in temperate regions such as the UK due to
a combination of seasonal air temperature and variations in altitude. We used year-5

round data on stream water temperature from three catchments with widely differing
mean elevations England and Wales (Upper Hafren (Neal et al., 2012); 550 m, Pow;
99 m, Wensum; 48 m) to establish a ordinary least squares model of stream tempera-
ture. The predictors of stream water tempertaure were altitude (alt) and a combination
of sine and cosine coefficients of the transformed (zero to 2×π) year day (yday) values10

for each observation. The sum of two sinusoidal terms is a phase shifted sine curve
with a period of 365 days. The regression model took the form:

Ti = α+β1alti +β2 sinydayi +β3 cosydayi +εi (1)

where α and β are coefficients of the ordinary least squares model and ε is the ran-
dom component of the linear relationship. We included interaction terms between the15

predictors and used the same stepwise selection procedure described above.

2.7 Potential monthly carbon fluxes and their uncertainty

We used the linear model (lm function in the R package) selected from the stepwise
procedure (Sect. 2.4.4) to predict log pCO2 in flowing water on 1 km grid across Eng-
land and Wales. We made these predictions for each of 12 months based on: (i) the20

geomorphic and land cover predictors, and (ii) the year day value for the mid-point of
each calendar month (Fig. 6). We used the model to predict the values for the 95 %
confidence intervals (using the interval argument in the predict function) for each 1 km
grid cell. We then backtransformed the predictions and the confidence interval values
onto the original scale; the backtransformed values are the median values in the origi-25

nal units. We then used the model of stream water temperatures to convert pCO2 (atm)
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to a dissolved gas concentration using Henry’s Law and so estimated free C concentra-
tions in water (mgL−1). This concentration can be converted to a quantity of potential
C evasion when it is multiplied by flow volume (Fig. 2).

3 Results

3.1 Predictive model5

3.1.1 Catchment area threshold

The formation of linear models for the prediction of log pCO2 based on subsets of
a range of CA thresholds (< 2, < 4, . . ., < 20, < 50, < 100 and < 250 km2) showed that
CA was a statistically significant predictor above 8 km2, but not at smaller CA thresh-
olds. This threshold is highlighted in Fig. 3. We infer that at positions on streams which10

drain catchments finer than this threshold area, the rate of CO2 evasion is balanced by
combined inputs from groundwater and in-stream sources. To ensure our final model
of stream water pCO2 was not biased by inclusion of observations from coarser catch-
ments, we undertook all subsequent analysis on those catchments with areas less than
8 km2.15

3.1.2 Land cover: orthogonal contrasts

The results from significance tests for five orthogonal, land cover contrasts are shown
in Table 2. It shows that the first (managed land vs. less managed land+urban), sec-
ond (urban vs. less managed) and fifth (arable vs. improved grassland) orthogonal
contrasts were all statistically significant (P < 0.05). By contrast, the third (forested vs.20

non forested) and fourth (non forested: wetter vs. drier) contrasts were not statisti-
cally significant. These findings suggest that the most effective reclassification of the
land cover classes would be to group all the less managed, non-urban classes to form
a single class, and retain three other separate classes: arable, improved grassland
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and urban. We undertook this reclassification before undertaking the stepwise model
selection procedure, reported in the next section.

3.1.3 Final model data

Summary statistics for the final dataset used to form the model for prediction of head-
water stream pCO2 are summarised in Table 3. It is based on data from 2634 loca-5

tions from the large headwater survey where pCO2 measurements were restricted to 4
months (June to September), and three small headwater catchments where measure-
ments were made through full calendar years.

The predictors (based on stepwise selection) which were included in the final linear
model of log pCO2 in streams across England and Wales are shown in Table 4. The10

sum of the model coefficients for sine and cosine functions multiplied by year day are
presented in Fig. 6 highlighting the effect of temperature on ecosystem respiration and
stream pCO2 values throughout the year. The residuals were close to a normal distri-
bution (histogram not shown: skewness coefficient = −0.31). This model accounted for
24 % of the variance (adjusted R2 = 0.24) in pCO2 values in the combined spatial and15

temporal dataset. Although there is a considerable amount of variation which the model
cannot account for, we consider its performance is reasonable given that: (i) pCO2 in
stream water exhibits a substantial degree of spatial (Jones and Mulholland, 1998) and
temporal (Dinsmore et al., 2010) heterogeneity, and (ii) the landscape predictors can
be obtained for most terrestrial landscapes.20

Those predictors which accounted for larger proportions of the variation in headwa-
ter pCO2 were the temporal coefficients (sin and cosine of year day), plus mean slope
and mean elevation, although in combination the land cover classes also accounted
for a reasonable proportion of the variance. Mean catchment elevation has a strong
positive correlation with rainfall. Greater rainfall leads to dilution of stream pCO2 which25

likely explains why the variation of the latter is explained by difference in mean catch-
ment elevation.
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It is noteworthy that neither PM class or BFIHOST values were statistically significant
predictors of pCO2. We infer that variations in headwater stream pCO2 are more closely
associated with those factors closely related to the generation of soil gas CO2 (such as
land cover type) and less related to the transport pathways determined by variations in
soil parent material and hydrogeology. However, mean catchment slope is a significant5

predictor of headwater pCO2. Steeper average slopes likely lead to shorter contact
times between soil and water before it reaches a channel, and so smaller average
pCO2 values.

3.2 Model of headwater stream temperature

The range of headwater stream temperature values for the three sites was 0.89 to10

18.1 ◦C, with a median of 12.25 ◦C. In combination, the use of sine and cosine func-
tions based on year day and elevation (in metres) accounted for 78 % of the variance
in headwater stream temperature. A summary of the model coefficients are presented
in Table 5. We considered the model provided a reasonable basis for predicting stream
temperatures on a 1 km grid across England and Wales for the mid point of each cal-15

endar month which we used to convert pCO2 to its free CO2-C concentration in water.

3.3 Model predictions: England and Wales

To highlight differences in free C concentrations in flow throughout the year across
England and Wales, Fig. 7 presents model predictions for the months of May and
November showing the differences in temperature controlling ecosystem respiration.20

Free C concentrations in flow are larger in May reflecting the greater concentrations of
CO2 derived from of soil and in-stream respiration, but also greater dilution in Novem-
ber associated with larger quantities of rainfall (Table 6). The maps also reflect the
differences in land cover type; the south and east of England is dominated by arable
agriculture over neutral soils with fertiliser inputs which enhances ecosystem respira-25

tion. By contrast, soil pH is more acidic in the north and west (of England and also in

16469

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/16453/2013/bgd-10-16453-2013-print.pdf
http://www.biogeosciences-discuss.net/10/16453/2013/bgd-10-16453-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 16453–16490, 2013

Landscape
predictors of

headwater stream
pCO2

B. G. Rawlins et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Wales) where and land cover types(Improved grassland or less managed habitats) are
subject to smaller, or no, nutrient additions.

The predicted median free C concentrations in May and November across England
and Wales were 1.78 and 1.11, respectively. The median free C concentrations for the
lower and upper 95 % confidence intervals were 1.97 and 1.47 for May and 0.91 and5

1.24 for November.
Based on the quantities of flow from each 1 km grid square (Fig. 2) we present the

potential monthly evasion fluxes for May and November using data on mean monthly
annual rainfall (Fig. 8). For years in which monthly rainfall is near the long-term average
quantities, the largest potential C fluxes (> 70 kgCkm−2 month−1) occur generally in the10

winter months (November–February) in upland (> 300 m elevation) areas subject to the
largest monthly rainfall (north-west England, Wales and south-west England). The low-
est potential fluxes occur in lowland settings with the smallest monthly flow quantities.
Potential C efflux is dominated by flow volumes rather than free C concentrations in
surface water; Table 6 shows there is a 30-fold difference in maximum (December)15

and minimum (June) monthly flow volume, whilst there is less than a two-fold differ-
ence in mean free C concentrations (1.18 and 1.78 mgL−1, also December and June).
So despite larger free C concentrations in surface water during summer months (with
average rainfall), potential C fluxes are substantially smaller than for average winter
months.20

Our model predicts a mean annual flux of 0.41 tCkm−2 yr−1 (expressed on the ba-
sis of total land area, not stream surface area, as is often used in other studies). The
total potential annual C efflux from flow across England and Wales (summing across
12 months) is 60.8 ktC (kilo tonnes carbon), with the lower and upper 95 % confidence
intervals of 52.3 and 71.4 ktC, respectively. The confidence intervals we present only25

reflect the uncertainty associated with prediction of pCO2 values and do not account
for the uncertainties in the computation of flow or with stream temperature estimation
(used to compute Henry’s constant). For the year 2002, Worrall et al. (2007) estimated
the total fluvial flux of C from the terrestrial biosphere to surface water across En-
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glish and Welsh rivers to be 1530 ktCyr−1 (mega tonnes carbon per year; equivalent to
10.3 tCkm2 yr−1). They estimated around 32 % (620 ktC) of the total from (equivalent to
4.2 tCkm2 yr−1) was lost to the atmosphere from surface water. The largest proportion
of this flux was DOC (42 %), but their flux of excess dissolved CO2 was 0.37 MtCyr−1.
This estimate was based on measurements of pCO2 in groundwater from those re-5

gions with major aquifers, having made assumptions concerning mixing with surface
waters. This estimate by Worrall et al. (2007) for the year 2002 is around six times
greater than our model prediction of potential CO2 flux from surface water to the atmo-
sphere (0.06 MtCyr−1) based on mean annual flow. In their study, Worrall et al. (2007)
computed an average free C concentration in surface water of England and Wales of10

5.2 mgCL−1 which is between 3 and 4 times larger than the overall mean concentration
of 1.48 mgCL−1 predicted by our model. It may be helpful to compare the methodology
applied by Worrall et al. (2007) and that used in this study to determine why the former
has much larger free C concentrations, based on mixing of ground and surface water.

Our model could be applied using future land use change scenarios to estimate the15

magnitude of their impact on potential C evasion fluxes from surface water, an approach
similar to that used to assess changes in greenhouse gas emissions from soil (Smith
et al., 2010). The model could also be modified to assess differences in the magnitude
of potential annual C efflux based on yearly variations in monthly rainfall or changes in
mean monthly temperature.20

We recognise that our model cannot currently account for all the processes influ-
encing the magnitude of potential CO2 evasion from surface water at the landscape
scale. Our approach does not account for changes in headwater stream CO2 flux due
to variations in discharge; although dissolved CO2 concentrations in headwater catch-
ments are lower at larger discharges (Dinsmore et al., 2013) total fluxes increase during25

storm events. To ensure our model was not biased by the inclusion of pCO2 measure-
ments from streams at the largest flow conditions we excluded sites where daily flow
was likely greater than long-term mean daily flow (based on local gauging stations).
To account for variations in flow would require a much shorter time-step (e.g. daily)
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and parameters to predict concentration–discharge relationships. Our model does not
account for in-stream sources of CO2 in the reaches of larger channels downstream of
their headwaters. Our model accounted for a smaller proportion (24 %) of the variation
in channel pCO2 by comparison to that presented by Lauerwald et al. (2013) (43 %).
There are two main factors which could account for this difference: (i) Lauerwald et al.5

(2013) used mean pCO2 values from a series of water samples compared to the more
variable, single snapshot observations used in our study, (ii) the observations reported
by Lauerwald et al. (2013) were for substantially larger catchments providing more op-
portunity for smoothing of the variation, in contrast to our smaller catchments which
likely exhibit greater variation.10

A further improvement on our current approach would be to compute actual rather
than potential CO2 evasion fluxes using functions which predict variations in down-
stream gas transfer velocities using parameters of stream hydraulics (Raymond et al.,
2012) and channel surface area. A recent study showed that channel wetted widths
across England and Wales are strongly influenced by catchment area and hydrological15

source of flow (Rawlins et al., 2013).

4 Conclusions

Using analyses of more than 3000 snapshot headwater samples across different land-
scape settings of England Wales we showed that below a CA threshold of around
8 km2 there was no statistically significant difference in stream pCO2 – evasion losses20

of CO2 from stream channels below this scale are balanced by inputs from groundwater
and in-stream sources. We used estimates of pCO2 from catchments with areas less
than 8 km2 to assess other landscape predictors of stream pCO2, including data from
three catchments in which pCO2 had been measured throughout a full calendar year.
Based on a series of orthogonal contrasts we found that grouping dominant catchment25

land cover types into four classes provided the optimum classification for pCO2. Mean
catchment elevation (interacting with land cover class), mean catchment slope and
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catchment relief (maximum minus minimum altitude) were also statistically significant
predictors of pCO2. We formed a model from these factors and stream water temper-
ature which accounted 24 % of the combined spatial and temporal variation in pCO2
across England and Wales. We predicted free C concentrations in water for a 1 km grid
across England and Wales using their catchment characteristics and a model of stream5

water temperature as predictors. We also used average monthly hydrologically effective
rainfall to compute flow on a 1 km grid across England and Wales. By combining the
predicted free C concentrations and flow for each 1 km grid cell, we computed monthly
and total annual potential C fluxes (60.8 ktC) from surface water to the atmosphere,
assuming that all CO2 entering surface water evades to the atmosphere.10

Acknowledgements. The potential evapotranspiration data were supplied by the Met Office
under licence (reference 010045532 sh). The Land Cover Map, 1 km rainfall data and BFIHOST
data were provided under licence by the Centre for Ecology and Hydrology (NERC). We would
like to thank: (i) all the staff and students at the British Geological Survey who were involved
in the collection and analysis of samples from headwater streams across England and Wales15

as part of the G-BASE (Geochemical Baseline Survey of the Environment) project, (ii) staff
from the Wensum and Eden Demonstration test catchments for providing their data, (iii) Kerry
Dinsmore at CEH for providing the data on stream water pCO2 values for Black burn, and
(iv) Ben Marchant and Murray Lark for statistical advice on the application of linear regression
models. This paper is published with the permission of the Executive Director of the British20

Geological Survey (NERC).

References

Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E., Packman, A. I., New-
bold, J. D., and Sabater, F.: Biophysical controls on organic carbon fluxes in fluvial networks
(vol 1, pg 95, 2008), Nat. Geosci., 2, 595–595, 2009. 1645425

Benstead, J. P. and Leigh, D. S.: An expanded role for river networks, Nat. Geosci., 5, 678–679,
2012. 16454

Booker, D. and Dunbar, M.: Predicting river width, depth and velocity at ungauged sites in
England and Wales using multilevel models, Hydrol. Process., 22, 4049–4057, 2008. 16456

16473

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/16453/2013/bgd-10-16453-2013-print.pdf
http://www.biogeosciences-discuss.net/10/16453/2013/bgd-10-16453-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 16453–16490, 2013

Landscape
predictors of

headwater stream
pCO2

B. G. Rawlins et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Boorman, D., Hollis, J., and Lilly, A.: Hydrology of soil types: a hydrologically-based classifi-
cation of the soils of UK, Tech. rep., Wallingford, available at: http://nora.nerc.ac.uk/7369/,
1995. 16461

Butman, D. and Raymond, P. A.: Significant efflux of carbon dioxide from streams and rivers in
the United States, Nat. Geosci., 4, 839–842, doi:10.1038/ngeo1294, 2011. 16455, 16456,5

16460, 16463
Crookston, N. L. and Finley, A. O.: YaImpute: an R package for kNN imputation, J. Stat. Softw.,

23, 1–16, available at: http://www.jstatsoft.org/v23/i10, 2007. 16462
Dinsmore, K. J., Billett, M. F., Skiba, U. M., Rees, R. M., Drewer, J., and Helfter, C.: Role of the

aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment, Glob.10

Change Biol., 16, 2750–2762, 2010. 16457, 16461, 16468, 16477
Dinsmore, K. J., Billett, M. F., and Dyson, K. E.: Temperature and precipitation drive temporal

variability in aquatic carbon and GHG concentrations and fluxes in a peatland catchment,
Glob. Change Biol., 19, 2133–2148, 2013. 16471

Fuller, R. M., Groom, G. B., and Jones, A. R.: The Land Cover Map of Great Britain: an au-15

tomated classification of Landsat Thematic Mapper data, Photogramm. Eng. Rem. S., 60,
553–562, 1994. 16461

Gustard, A., Bullock, A., and Dixon, J. M.: Low flow estimation in the United Kingdom, Tech.
rep., scanned legacy working document, Wallingford, available at: http://nora.nerc.ac.uk/
6050/, 1992. 1646120

Johnson, C., Breward, N., Ander, E., and Ault, L.: G-BASE: baseline geochemical mapping of
Great Britain and Northern Ireland, Geochem.-Explor. Env. A., 5, 1–13, 2005. 16458

Johnson, M. S., Lehmann, J., Riha, S. J., Krusche, A. V., Richey, J. E., Ometto, J. P. H. B., and
Couto, E. G.: CO2 efflux from Amazonian headwater streams represents a significant fate for
deep soil respiration, Geophys. Res. Lett., 35, 034619, doi:10.1029/2008GL034619, 2008.25

16455
Jones, J., Partick, J., and Mulholland, J.: Influence of drainage basin topography and elevation

on carbon dioxide and methane supersaturation of stram water, Biogeochemistry, 40, 52–72,
1998. 16456, 16457

Jones, J. B. and Mulholland, P. J.: Carbon dioxide variation in a hardwood forest stream: an30

integrative measure of whole catchment soil respiration, Ecosystems, 1, 183–196, 1998.
16455, 16468

16474

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/16453/2013/bgd-10-16453-2013-print.pdf
http://www.biogeosciences-discuss.net/10/16453/2013/bgd-10-16453-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://nora.nerc.ac.uk/7369/
http://dx.doi.org/10.1038/ngeo1294
http://www.jstatsoft.org/v23/i10
http://nora.nerc.ac.uk/6050/
http://nora.nerc.ac.uk/6050/
http://nora.nerc.ac.uk/6050/
http://dx.doi.org/10.1029/2008GL034619


BGD
10, 16453–16490, 2013

Landscape
predictors of

headwater stream
pCO2

B. G. Rawlins et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Lauerwald, R., Hartmann, J., Moosdorf, N., Kempe, S., and Raymond, P. A.: What controls the
spatial patterns of the riverine carbonate system? – a case study for North America, Chem.
Geol., 337–338, 114–127, 2013. 16456, 16463, 16472

Lawley, R. and Smith, B.: Digital soil mapping at a national scale: a knowledge and GIS based
approach to improving parent material and property information, in: Digital Soil Mapping5

with Limited Data, edited by: Hartemink, A., McBratney, A., and de Lourdes Mendonca-
Santos, M., Springer, available at: http://nora.nerc.ac.uk/4926/, 173–182, 2008. 16461

Li, S., Lu, X. X., and Bush, R. T.: CO2 partial pressure and CO2 emission in the Lower Mekong
River, J. Hydrol., doi:10.1016/j.jhydrol.2013.09.024, 2013. 16455, 16456

Morel, F. M. M. and Hering, J.: Principles and Applications of Aquatic Chemistry, Wiley-10

Interscience, 1993. 16457
Neal, C., Reynolds, B., Rowland, P., Norris, D., Kirchner, J. W., Neal, M., Sleep, D., Lawlor, A.,

Woods, C., Thacker, S., Guyatt, H., Vincent, C., Hockenhull, K., Wickham, H., Harman, S.,
and Armstrong, L.: High-frequency water quality time series in precipitation and streamflow:
from fragmentary signals to scientific challenge, Sci. Total. Environ., 434, 3–12, 2012. 1646615

Owen, G. J., Perks, M. T., Benskin, C. M. H., Wilkinson, M. E., Jonczyk, J., and Quinn, P. F.:
Monitoring agricultural diffuse pollution through a dense monitoring network in the River Eden
Demonstration Test Catchment, Cumbria, UK, Area, 44, 443–453, 2012. 16477

Parkhurst, D. L. and Appelo, C.: User’s Guide to PHREEQC – (Version 2) a computer program
for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calcula-20

tions, Tech. Rep. 99–4259, US Geological Survey Water Resources Investigations Report,
1999. 16459, 16460

Prasad, M. B. K., Kaushal, S. S., and Murtugudde, R.: Long-term pCO2 dynamics in rivers
in the Chesapeake Bay watershed, Appl. Geochem., 31, 209–215, available at: http://www.
sciencedirect.com/science/article/pii/S0883292713000140, 2013. 1645625

R Development Core Team: R: a Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, available at: http://www.R-project.org/,
2012. 16463, 16464

Rawlins, B. G., Clark, L., and Boyd, D. S.: Using air photos to parameterise landscape predictors
of channel wetted width, Earth Surf. Proc. Land., doi:10.1002/esp.3469, 2013. 1647230

Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland, P., Laursen, A. E.,
McDowell, W. H., and Newbold, D.: Scaling the gas transfer velocity and hydraulic geometry
in streams and small rivers, Limnol. Oceanogr., 2, 41–53, 2012. 16457, 16472

16475

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/16453/2013/bgd-10-16453-2013-print.pdf
http://www.biogeosciences-discuss.net/10/16453/2013/bgd-10-16453-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://nora.nerc.ac.uk/4926/
http://dx.doi.org/10.1016/j.jhydrol.2013.09.024
http://www.sciencedirect.com/science/article/pii/S0883292713000140
http://www.sciencedirect.com/science/article/pii/S0883292713000140
http://www.sciencedirect.com/science/article/pii/S0883292713000140
http://www.R-project.org/
http://dx.doi.org/10.1002/esp.3469


BGD
10, 16453–16490, 2013

Landscape
predictors of

headwater stream
pCO2

B. G. Rawlins et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Smith, P., Bhogal, A., Edgington, P., Black, H., Lilly, A., Barraclough, D., Worrall, F., Hillier, J.,
and Merrington, G.: Consequences of feasible future agricultural land-use change on soil
organic carbon stocks and greenhouse gas emissions in Great Britain, Soil Use Manage.,
26, 381–398, 2010. 16471

Smith, V. R.: Moisture, carbon and inorganic nutrient controls of soil respiration at a sub-5

Antarctic island, Soil Biol. Biochem., 37, 81–91, 2005. 16464
Sun, G., Caldwell, P., Noormets, A., McNulty, S. G., Cohen, E., Moore Myers, J., Domec, J.-C.,

Treasure, E., Mu, Q., Xiao, J., John, R., and Chen, J.: Upscaling key ecosystem functions
across the conterminous United States by a water-centric ecosystem model, J. Geophys.
Res.-Biogeo., 116, JG001573, doi:10.1029/2010JG001573, 2011. 1645510

Venables, W. N. and Ripley, B. D.: Modern Applied Statistics with S, 4th edn., Springer, New
York, available at: http://www.stats.ox.ac.uk/pub/MASS4, 2002. 16465

Wallin, M. B., Öquist, M. G., Buffam, I., Billett, M. F., Nisell, J., and Bishop, K. H.: Spa-
tiotemporal variability of the gas transfer coefficient (KCO2

) in boreal streams: implica-
tions for large scale estimates of CO2 evasion, Global Biogeochem. Cy., 25, GB3025,15

doi:10.1029/2010GB003975, 2011. 16455
Wensum Alliance: Manual sample water quality data Wensum Demonstration Test Catchment,

Tech. rep., University of Norwich, East Anglia, UK, 2013. 16477
Worrall, F., Guilbert, T., and Besien, T.: The flux of carbon from rivers: the case for flux from

England and Wales, Biogeochemistry, 86, 63–75, 2007. 16470, 1647120

16476

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/16453/2013/bgd-10-16453-2013-print.pdf
http://www.biogeosciences-discuss.net/10/16453/2013/bgd-10-16453-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2010JG001573
http://www.stats.ox.ac.uk/pub/MASS4
http://dx.doi.org/10.1029/2010GB003975


BGD
10, 16453–16490, 2013

Landscape
predictors of

headwater stream
pCO2

B. G. Rawlins et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 1. Features of three headwater catchments where weekly or monthly stream water mea-
surements or speciation-based estimates of pCO2 were included in the predictive model (cf:
Fig. 2).

Regional catchment (headwater catchment)

Esk (Black burn) Eden (Pow) Wensum (Blackwater)

Catchment Area (km2) 3.4 10 8
Dominant land cover Bog Impr. grass Arable
Mean elevation (m) 280 99 48
Mean slope (◦) 1.4 1.4 0.73
Relief (m) 60 96 26
Monitoring frequency weekly monthly weekly
pCO2 measurementsa D S S
Reference Dinsmore et al. (2010) Owen et al. (2012) Wensum Alliance (2013)

a D=direct, S=estimated by PHREEQC speciation using measurements of alkalinity, pH plus major anions and cation
concentrations for the Wensum.
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Table 2. Results from orthogonal contrasts between groups of selected land cover classes
based on the hierarchical classification (Fig. 5).

Estimate Std. Error t value P value

Contrast1 −0.021 0.003 −6.82 1.1×10−11

Contrast2 −0.024 0.008 −3.13 0.002
Contrast3 −0.007 0.009 −0.74 0.47
Contrast4 0.012 0.01 1.23 0.22
Contrast5 0.088 0.006 15.4 < 2×10−16
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Table 3. Summary statistics for geomorphological and land cover predictors (for catchments
derived from 2637 sample sites) used to form the model of stream pCO2, and for a 1 km grid
(n = 147 829) across England and Wales.

Model dataa 1 km grid

Geomorphic data
Minimum of mean elevation (m) 0 0
Mean of mean elevation (m) 215 124
Maximum of mean elevation (m) 722 945
Minimum of mean slope (◦) 0.09 0
Mean of mean slope (◦) 4.76 3.78
Maximum of mean slope (◦) 34.8 33.2
Minimum relief (m) 0 0
Mean relief (m) 99.5 58
Maximum relief (m) 626 669
Land cover classb (%)
Arable 34.7 41
Improved grassland 34.1 28.8
Suburban 0.007 0.09
Less managed 30.5 21.4

a Data from catchments of headwater streams with CA < 8 km2.
b Dominant land cover class in catchment or grid cell.
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Table 4. Summary of the model from stepwise selection of predictors of log pCO2 in stream
water based on geomorphic variables, land cover classification and year day. The coefficient
(estimate) for the three land cover classes shown are expressed as differences from the Arable
land cover class (not shown).

Estimate Std. Error t value P value

Intercept −5.53 0.04 −131 < 2×10−16

sin(yday) 0.11 0.03 3.903 9.70×10−5

cos(yday) −0.24 0.03 −7.904 3.76×10−15

Mean Slope −0.06 0.006 −10.5 < 2×10−16

Relief −0.0009 0.0002 −3.802 0.0001
Mean Elev. −0.003 0.0004 −7.61 3.75×10−14

IGa −0.39 0.07 −5.44 5.75×10−8

Urban −0.09 0.36 −0.260 0.79
LMb −0.04 0.087 −0.47 0.64
Elev.c: IGb 0.002 0.0004 4.48 7.67×10−6

Elev.c: Urban 0.001 0.002 0.47 0.63
Elev.c: LMb 0.0015 0.0004 3.72 0.0002

a Improved grassland, b Less managed (non urban), c mean Elevation.
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Table 5. Summary of the ordinary least squares model used for the prediction of daily head-
water stream temperature for the 1 km grid across England and Wales. Year day (yday) is the
transformed numeric value of day in the calendar year. A colon (:) denotes inclusion of an
interaction (a product term) of predictors.

Estimate Std. Error t value P value

Intercept 10.2 0.024 434 < 2×10−16

sin(yday) −2.37 0.05 −47.6 < 2×10−16

cos(yday) −3.23 0.031 −103 < 2×10−16

Elev. −0.004 0.0001 −38.1 < 2×10−16

sin(yday):cos(yday) −2.64 0.088 −29.8 < 2×10−16

sin(yday):Elev. 0.001 0.0002 8.17 3.38×10−16

cos(yday):Elev. 0.0003 0.0001 2.147 0.031
sin(yday):cos(yday):Elev 0.005 0.0003 17.0 < 2×10−16
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Table 6. Summary of monthly predictions across all of England and Wales for total flow volume
(giga litres; GL) based on mean monthly annual rainfall minus evapotranspiration (1961–1990),
mean concentration of free C (mgL−1) and potential carbon efflux (kilo tonnes carbon; ktC).

Flow (GL) mean free C (mgL−1) C effluxa (ktC)

Jan 11 026 1.34 12 419
Feb 6740 1.52 8435
Mar 5409 1.69 7003
Apr 1304 1.77 1363
May 364 1.78 311
Jun 380 1.74 321
Jul 387 1.64 303
Aug 1415 1.47 1206
Sep 800 1.30 552
Oct 7540 1.16 6924
Nov 10 521 1.11 9973
Dec 11 952 1.18 11 959

Total 57 840 – 60 770

a Potential C efflux – assumes all free C evades to the atmosphere.
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Fig. 1. Locations of sites referred to in this study across England and Wales (coastline shown).
Blue symbols show the headwater stream survey sampling locations. Red discs show the near-
est national river flow archive gauging stations to the survey sites. Green symbols are head-
water sites from which temporal (weekly or monthly) data were available for pCO2 and stream
temperature: E=Eden (Pow), W=Wensum, B=Black burn in Scotland). Orange disc shows
the location of the Upper Hafren at Plynlimon (P) from which stream water temperature data
was used.
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Fig. 2. Flow diagram showing stages in the development and application of a model to predict
potential C (CO2) fluxes from surface water across England and Wales. Red boxes=datasets,
green boxes=data selection, blue boxes= computations. a England and Wales.
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Fig. 3. Scatterplot of headwater catchment area (CA) vs. stream water pCO2 (µatm). The
threshold chosen to select a subset of the data corresponding to the smallest headwater catch-
ments (< 8 km2) is shown by the red dashed line.
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Fig. 4. Boxplot of headwater stream pCO2 values by dominant land cover class for each catch-
ment (n = 2637) based on broad habitat types. Box widths are proportional to number of sam-
ples in each class. The red dashed line is the overall median of the data.
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Fig. 5. Hierarchical classification of the ten land cover classes used to define groups for statis-
tical analysis using orthogonal contrasts. Less Man. refers to less managed land cover types in
contrast to more intensively managed (agricultural) land.
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Fig. 6. The sum of sine and cosine model coefficients multiplied by year day highlighting the
seasonal effect of temperature on headwater stream pCO2. Differences in the magnitude of
the coefficients used to apply the model at the mid point of each calendar month (J= January,
F=February, etc.) are highlighted by the dashed red lines.
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Fig. 7. Predicted free carbon concentration (mgL−1) in flow for a 1 km grid across England
and Wales: May and November. Coordinates are metres on the British National Grid. Note the
maximum class limit is greater than the arithmetic scale used in the other classes.
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Fig. 8. Predicted potential monthly source of carbon (kg) efflux based on flow for a 1 km grid
across England and Wales (May and November). Coordinates are metres on the British Na-
tional Grid. Note the maximum class limit is greater than the arithmetic scale used in the other
classes.
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